Relative stereociliary motion in a hair bundle opposes amplification at distortion frequencies.
نویسندگان
چکیده
Direct gating of mechanoelectrical transduction channels by mechanical force is a basic feature of hair cells that assures fast transduction and underpins the mechanical amplification of acoustic inputs, but the associated non-linearity - the gating compliance - inevitably distorts signals. Because reducing distortion would make the ear a better detector, we sought mechanisms with that effect. Mimicking in vivo stimulation, we used stiff probes to displace individual hair bundles at physiological amplitudes and measured the coherence and phase of the relative stereociliary motions with a dual-beam differential interferometer. Although stereocilia moved coherently and in phase at the stimulus frequencies, large phase lags at the frequencies of the internally generated distortion products indicated dissipative relative motions. Tip links engaged these relative modes and decreased the coherence in both stimulated and free hair bundles. These results show that a hair bundle breaks into a highly dissipative serial arrangement of stereocilia at distortion frequencies, precluding their amplification.
منابع مشابه
Individual USH2 proteins make distinct contributions to the ankle link complex during development of the mouse cochlear stereociliary bundle.
Usher syndrome (USH) is the leading cause of inherited deaf-blindness, with type 2 (USH2) being the most common clinical form. Studies suggest that proteins encoded by USH2 causative genes assemble into the ankle link complex (ALC) at the hair cell stereociliary bundle; however, little is known about the in vivo assembly and function of this complex. Using various USH2 mutant mice, we showed by...
متن کاملA model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels.
Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplificat...
متن کاملThe small GTPase Rac1 regulates auditory hair cell morphogenesis.
Morphogenesis of sensory hair cells, in particular their mechanotransduction organelle, the stereociliary bundle, requires highly organized remodeling of the actin cytoskeleton. The roles of Rho family small GTPases during this process remain unknown. Here we show that deletion of Rac1 in the otic epithelium resulted in severe defects in cochlear epithelial morphogenesis. The mutant cochlea was...
متن کاملDamping Properties of the Hair Bundle
The viscous liquid surrounding a hair bundle dissipates energy and dampens oscillations, which poses a fundamental physical challenge to the high sensitivity and sharp frequency selectivity of hearing. To identify the mechanical forces at play, we constructed a detailed finite-element model of the hair bundle. Based on data from the hair bundle of the bullfrog’s sacculus, this model treats the ...
متن کاملActive cochlear amplification is dependent on supporting cell gap junctions
Mammalian hearing relies upon active cochlear mechanics, which arises from outer hair cell electromotility and hair bundle movement, to amplify acoustic stimulations increasing hearing sensitivity and frequency selectivity. Here we describe the novel finding that gap junctions between cochlear supporting cells also have a critical role in active cochlear amplification in vivo. We find that targ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of physiology
دوره 590 2 شماره
صفحات -
تاریخ انتشار 2012